Search results for " brain tissue"
showing 5 items of 5 documents
Haptoglobin interacts with apolipoprotein E and beta-amyloid and influences their crosstalk.
2014
Beta-amyloid accumulation in brain is a driving force for Alzheimer's disease pathogenesis. Apolipoprotein E (ApoE) represents a critical player in beta-amyloid homeostasis, but its role in disease progression is controversial. We previously reported that the acute-phase protein haptoglobin binds ApoE and impairs its function in cholesterol homeostasis. The major aims of this study were to characterize the binding of haptoglobin to beta-amyloid, and to evaluate whether haptoglobin affects ApoE binding to beta-amyloid. Haptoglobin is here reported to form a complex with beta-amyloid as shown by immunoblotting experiments with purified proteins, or by its immunoprecipitation in brain tissues …
Chronic otitis caused by heterotopic brain tissue in pterygopalatine fossa
2007
Summary Heterotopic brain tissue is a rare is congenital anomaly, it may present at any age but it is frequently in infancy. This anomaly can occur most frequently in nasal region, although rests elsewhere in the digestive tract, in facial tissue or in lungs have been reported. Heterotopic brain tissue has been defined as a mass composed of mature brain tissue, outside the cranial cavity or spinal canal. We present a 9 years old girl with history of left chronic otitis and nasal obstruction caused by heterotopic brain tissue in pterygopalatine fossa.
Exploring Cell Biodiversity
2015
Brain tissue is a really complex system composed of different cell types that change in shape and size. A single neuron itself has a cell body, dendrites and an axon. About 80% of cerebral tissue consists of water molecules that are confined (intra and extra cellular) in its disordered biologic networks. Using neutron scattering on IN13 we are able to explore hydrogens (H) dynamics in time scale at about 40 ps and in size scale at about 1 Å. Such characteristic make it suitable to investigate brain tissue heterogeneity exploiting hydrogens as a probe since major constituent of macromolecules and water. Elastic neutron scattering (ENS) gives information about means square displacement (MSDs)…
Exploring cell biodiversity - Neutron scattering investigation of water diffusion in complex system
2015
Scientists from biophysics, biology and medicine fields are interested in exploring and characterizing topologically cerebral tissue in order to diagnostic different diseases which affect brain in many patients [1-3]. One of the most diffuse diagnostic techniques is dMRI (diffusion magnetic resonance imaging) which extracts information about heterogeneity and asymmetries in brain tissue studying water diffusion dynamics (~80% mass constituent of tissues). The experimental limit of this technique is related to the acquisition time, TA, of the order of milliseconds. Water molecules diffuse within micrometre distance using TA as diffuse time (Eistein equation D~2TA). Cells have micrometric siz…
Water Dynamics in Biological Systems investigated using Neutron Scattering Techniques
Living systems can not survive in absence of the water environments which play a fundamental role in living functions. Thus in the scienti?c community many studies were and are addressed to characterize water and its dynamics properties in biological systems. However, a clear description of water in such systems has been not reached yet. In fact, the investigations performed with di?erent techniques - those based on Nuclear Magnetic Resonance or those based on Neutron Scattering - look at di?erent di?usive motions and interactions water-biomolecules, leading controversial results and hence generating many debates between scientists. In this thesis we support the idea that two water populati…